Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 168: 46-54, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024186

RESUMO

A series of iminopyridine platinum chelate compounds has been prepared and characterized by NMR spectroscopy and single-crystal X-ray diffraction. The complexes were evaluated in C6 tumoral cells as an in vitro model for glioblastoma multiforme. The DNA-binding properties of these complexes were studied by UV-Vis absorption and fluorescence spectroscopy and Density Functional Theory calculations were performed in an effort to rationalize the observed properties at the molecular level. The most promising drug candidate displayed a similar potency in inducing cell death to the clinically used reference compound and showed significant inhibition of glioblastoma cell proliferation. Moreover, this compound had a safer profile than cisplatin on non-tumoral cells.


Assuntos
Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , DNA/química , Glioblastoma/tratamento farmacológico , Platina/química , Platina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Cristalografia por Raios X , Iminas/química , Iminas/farmacologia , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Ratos
2.
Chempluschem ; 80(6): 963-972, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31973254

RESUMO

A combined experimental and quantum chemical study has been performed on rac- and meso-[Zr{1-Me2 Si(3-η5 -C9 H5 Et)2 }Cl2 ] (rac- and meso-1) and their hydrogenated forms (rac- and meso-2) to understand ligand effects and guide ligand design for more active ansa-bis(indenyl) zirconocenes for the polymerisation of ethylene. The rac-ansa-zirconocene rac-[Zr(1-Me2 Si{3-Et-(η5 -C9 H9 )}2 )Cl2 ] (rac-2) has been prepared and fully characterised by NMR spectroscopy and elemental analysis. The molecular structure of rac-2 has also been determined by single-crystal XRD. The behaviour of the catalysts was analysed in the polymerisation of ethylene and higher activities were obtained for rac-1 and its hydrogenated form rac-2. The influence of the stereochemistry and hydrogenation of the indenyl ligand on the experimental activities has been evaluated by computational studies. The differences along the reaction pathway are dominated by changes in the relative stabilities of the catalytic intermediates. A hybrid density functional B3LYP study, in the presence of toluene as the solvent, indicates that the rac forms give rise to more active species than their meso counterparts. The hydrogenation of the rac forms is a very promising approach to increase activities in polymerisation, in contrast to the meso forms. Finally, the global mechanism rate constants for the polymerisation reaction for each metallocene were calculated by using the thermodynamic formulation of transition-state theory to complement the computational study.

3.
Dalton Trans ; 43(46): 17434-44, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25338231

RESUMO

The new monoguanidinato complexes [Nb(NMe2)2{N(2,6-(i)Pr2C6H3)}{(NR)(NR')C(NMe2)}] (R = R' = (i)Pr, 2; R = (t)Bu, R' = Et, 3) were obtained by the insertion reaction of either diisopropylcarbodiimide or 1-tert-butyl-3-ethylcarbodiimide with the triamido precursor [Nb(NMe2)3(N-2,6-(i)Pr2C6H3)] (1) bearing a bulky imido moiety. The µ-oxo derivative [{N(2,6-(i)Pr2C6H3)}{(N(i)Pr)2C(NMe2)}(NMe2)Nb]2(µ-O) (2a) was formed by an unexpected hydrolysis reaction of the amido niobium compound 2. Alternatively, monoguanidinato complexes [Nb(NMe2)2{N(2,6-(i)Pr2C6H3)}{(N(i)Pr)2C(NHR)}] (R = (i)Pr, 4, (n)Bu, 5) can be obtained by protonolysis of 1 with N,N',N''-alkylguanidines [(NH(i)Pr)2C(NR)] (R = (i)Pr, (n)Bu). Compound also reacts with either tert-butylisocyanide or 2,6-xylylisocyanide to give, by a migratory insertion reaction, the corresponding iminocarbamoyl compounds [Nb(NMe2)2{(NMe2)C=NR}{N(2,6-(i)Pr2C6H3)}] (R = (t)Bu, 6, Xy, 7). Addition of the neutral alkylguanidines to complex 6 results in a facile C-N bond cleavage at room temperature in a process directed by the formation of the stable chelate complex 4 or 5. Complex reacts with heterocumulenic CS2 to produce new imido dithiocarbamato complexes [Nb(NMe2){S2C(NMe2)}2{N(2,6-(i)Pr2C6H3)}] (8) and [Nb{S2C(NMe2)}3{N(2,6-(i)Pr2C6H3)}] (9). These complexes do not react with alkylguanines, although new mixed guanidinato dithiocarbamato complexes [Nb(NMe2){S2C(NMe2)}{(N(i)Pr)2C(NHiPr)}{N(2,6-(i)Pr2C6H3)}] (10) and [Nb{(S2C(NMe2)}2{(N(i)Pr)2C(NH(i)Pr)}{N(2,6-(i)Pr2C6H3)}] (11) can be obtained by reaction of complex 4 with one or two equivalents of CS2, respectively. All of the complexes were characterized spectroscopically and the dynamic behaviour of some of them was studied by variable-temperature NMR. The molecular structures of 2a, 3, 6 and 10 were also established by X-ray diffraction studies.

5.
Chem Commun (Camb) ; 49(77): 8701-3, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23955374

RESUMO

The complex [Nb(NMe2)2{(NMe2)C=N(t)Bu}{N(2,6-(i)Pr2C6H3)}] reacts with trialkylguanidines and undergoes a room temperature C-N bond cleavage of the iminocarbamoyl moiety. This reaction affords the guanidinate complexes [Nb(NMe2)2{N(2,6-(i)Pr2C6H3)}{(N(i)Pr)2C(NH(i)Pr)}] or [Nb(NMe2)2{N(2,6-(i)Pr2C6H3)}{(N(i)Pr)2C(NH(n)Bu)}] and free isocyanide. The first crystal structure of a niobium iminocarbamoyl complex is reported.

6.
Dalton Trans ; 42(23): 8223-30, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23588230

RESUMO

The molecular structure of the guanidinate complex {NbBz2(N(t)Bu)[(4-BrC6H4)N=C(N(i)Pr)(NH(i)Pr)]}, previously obtained by reaction of [NbBz3(N(t)Bu)] and the corresponding guanidine proligand, has been established by X-ray diffraction. The series of complexes {NbBz2(N(t)Bu)[(Ar)N=C(N(i)Pr)(NH(i)Pr)]} (Ar = 4-BrC6H4, 4-(t)BuC6H4, 4-MeOC6H4) and {[NbBz2(N(t)Bu)]2[(C6H4)(N=C(N(i)Pr)(NH(i)Pr))2]} show a preferred asymmetric coordination of the guanidinate ligand by means of one alkylamino nitrogen and the arylimino nitrogen atom. Computational studies confirm this preference and the results suggest that electronic factors prevail over steric factors. In addition, reaction of complex [NbBz3(N(t)Bu)] with {2-((n)butyl)-1,3-diisopropylguanidine} did not give rise to the regioselective asymmetrical guanidinate. Instead, the complex {NbBz2(N(t)Bu)[((n)Bu)N=C(N(i)Pr)(NH(i)Pr)]} was obtained as a mixture of three isomers with symmetrical and asymmetrical coordination modes. Finally, the complex [NbBz3(N(t)Bu)] was shown to be a suitable precatalyst for the guanylation reaction of a wide range of amines under mild conditions. Guanidinates are proposed as intermediates in the mechanism of this reaction. The molecular structure of the biguanidine {2,2'-(1,4-phenylene)bis(2',3-diisopropylguanidine)} was also established by X-ray diffraction studies.

7.
Dalton Trans ; 39(28): 6419-25, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20532278

RESUMO

Vanadium oxo-alkoxide complexes [V(O)(Cl)(3-x)(OR)x] (x = 1, R = Me (1), Et (2), n-Pr (3); x = 2, R = Me (4), Et (5), n-Pr (6)) were obtained by a clean reaction between [V(O)Cl3] and different excesses of ROSiMe3 silicon ethers. Imido complexes [V(NAr)(Cl)(3-x)(OR)x]2 (Ar = 2,6-i-Pr2C6H3; x = 1, R = Me (7), Et (8), n-Pr (9); x = 2, R = Me (10), Et (11), n-Pr (12)) were prepared in excellent yields by reaction of the oxo-alkoxide precursors and ArNCO. X-Ray crystal structure determinations for 7, 8 and 12 revealed dimeric structures with alkoxide bridges. Complexes 7-12 are precursor of highly active guanylation catalysts. The study of the catalytic reaction allow us to propose the non-participation of the imido moiety. This was confirmed when complexes 1-6 gave better catalysts under the same conditions. The simple and commercial [V(O)Cl3] (16) can be proposed as the most effective catalyst in this series of vanadium complexes.

8.
Inorg Chem ; 49(6): 2859-71, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20146427

RESUMO

The reaction of the hybrid scorpionate/cyclopentadienyl lithium salt [Li(bpzcp)(THF)] [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] with 1 equiv of RMgCl proceeds cleanly to give very high yields of the corresponding monoalkyl kappa(2)-NN-eta(5)-C(5)H(4) magnesium complexes [Mg(R)(kappa(2)-eta(5)-bpzcp)] (R = Me 1, Et 2, (n)Bu 3, (t)Bu 4, CH(2)SiMe(3) 5, CH(2)Ph 6). Hydrolysis of the hybrid lithium salt [Li(bpzcp)(THF)] with NH(4)Cl/H(2)O in ether cleanly affords the two previously described regioisomers: (bpzcpH) 1-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (a) and 2-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (b). Subsequent reaction of the bpzcpH hybrid ligand with ZnR(2) quantitatively yields the monoalkyl kappa(2)-NN-eta(1)(pi)-C(5)H(4) zinc complexes [Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = Me 7, Et 8, (t)Bu 9, CH(2)SiMe(3) 10). Additionally, magnesium alkyls 1, 2, 4, and 5 can act as excellent cyclopentadienyl and alkyl transfers to the zinc metal center and yield zinc alkyls 7-10 in good yields. The single-crystal X-ray structures of the derivatives 4, 5, 7, and 10 confirm a 4-coordinative structure with the metal center in a distorted tetrahedral geometry. Interestingly, whereas alkyl magnesium derivatives 4 and 5 present a eta(5) coordination mode for the cyclopentadienyl fragment, zinc derivatives 7 and 10 feature a peripheral eta(1)(pi) arrangement in the solid state. Furthermore, the reaction of the hybrid lithium salt [Li(bpzcp)(THF)] with 1 equiv of ZnCl(2) in tetrahydrofuran (THF) affords very high yields of the chloride complex [ZnCl{kappa(2)-eta(1)(pi)-bpzcp}] (11). Compound 11 was used as a convenient starting material for the synthesis of the aromatic amide zinc compound [Zn(NH-4-MeC(6)H(4)){kappa(2)-eta(1)(pi)-bpzcp}] (12), by reaction with the corresponding aromatic primary amide lithium salt. Alternatively, aliphatic amide and alkoxide derivatives were only accessible by protonolysis of the bis(amide) complexes [M{N(SiMe(3))(2)}(2)] (M = Mg, Zn) and the mixed ligand complex [EtZnOAr)] with the hybrid ligand bpzcpH to afford [Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = N(SiMe(3))(2) 13, R = 2,4,6-Me(3)C(6)H(2)O 14) and [Mg{N(SiMe(3))(2)}(kappa(2)-eta(5)-bpzcp)] (15). Finally, alkyl and alkoxide-containing complexes 1-10 and 14 can act as highly effective single-component living initiators for the ring-opening polymerization of epsilon-caprolactone and lactides over a wide range of temperatures. Epsilon-caprolactone is polymerized within minutes to give high molecular weight polymers with medium-broad polydispersities (M(n) > 10(5), M(w)/M(n) = 1.45). Lactide afforded poly(lactide) materials with medium molecular weights and polydispersities as narrow as M(w)/M(n) = 1.02. Additionally, polymerization of L-lactide occurred without racemization in the propagation process and offered highly crystalline, isotactic poly(L-lactides) with very high melting temperatures (T(m) = 165 degrees C). Microstructural analysis of poly(rac-lactide) by (1)H NMR spectroscopy revealed that propagations occur without appreciable levels of stereoselectivity. Polymer end group analysis showed that the polymerization process is initiated by alkyl transfer to the monomer.


Assuntos
Compostos de Magnésio/química , Polímeros/química , Compostos de Zinco/química , Ciclização , Ésteres
9.
Dalton Trans ; 39(3): 930-40, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20066238

RESUMO

The reaction of bis(3,5-dimethylpyrazol-1-yl)methane (bdmpzm) with Bu(n)Li and alkyl- or aryl-containing isocyanates or isothiocyanates, some of which were chiral reagents, and subsequent treatment with saturated aqueous ammonium chloride or HCl in diethyl ether gave (i) new heteroscorpionate ligands in the form of the acetamide or thioacetamide compounds [pbpamH (1), tbpamH (2), sbpamH (3) as racemic mixtures, (S)-mbpamH (4) as an enantiopure compound, pbptamH (5) and tbptamH (6)] and (ii) stabilization of new homoleptic lithium complexes containing fac-coordinating NNE-donor ligands [Li{NNE(H)}(2)]Cl (E = O, S) (7-10). A series of scandium and yttrium complexes have been prepared by the reaction of MCl(3)(THF)(3) (M = Sc, Y) with the amide or thioamide compounds. Under the appropriate experimental conditions mononuclear complexes, namely [MCl(3){kappa(3)-NNE(H)}] (E = O, S) (11-18) have been prepared. A family of alkyl-containing complexes of general formulae [M(CH(2)SiMe(3))(2)(kappa(3)-pbptam)] [M = Sc (19), Y (20)] and [M(CH(2)SiMe(3))(2)(kappa(3)-tbptam)] [M = Sc (21), Y (22)] was also prepared. Preliminary results show that compounds and can act as single-component living initiators for ring-opening polymerization. Polymerization of epsilon-caprolactone occurred within minutes to give medium molecular weight polymers (Mn up to 2 x 10(5)) and narrow polydispersities (Mw/Mn < 1.6). Polymer end group analysis showed that the polymerization process is initiated by alkyl transfer to the monomer. The structures of these complexes have been determined by spectroscopic methods and the X-ray crystal structures of 5, 6 and 8 were also established.

10.
Dalton Trans ; (38): 8054-62, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19771369

RESUMO

The reaction of the heteroscorpionate lithium salts [Li(pbpamd)(THF)] [pbpamd = N,N'-diisopropylbis(3,5-dimethylpyrazol-1-yl)acetamidinate] and [Li(tbpamd)(THF)] [tbpamd = N-ethyl-N'-tert-butylbis(3,5-dimethylpyrazol-1-yl)acetamidinate] with 1 equivalent of ZnCl2 in THF affords very high yields of the neutral heteroscorpionate chloride zinc complexes [ZnCl(NNN)] (NNN = pbpamd 1 and tbpamd 2). Compound 1 was used as a convenient starting material for the synthesis of aromatic amide zinc compounds [Zn(NHAr)(pbpamd)], where NHAr = 4-methylphenylamide (NH-4-MeC6H4) 3, 2,4,6-trimethylphenylamide (NH-2,4,6-Me3C6H2) 4 and 2,6-diethylphenylamide (NH-2,6-Et2C6H3) 5, by the reaction of the corresponding aromatic primary amide lithium salts. Alternatively, aliphatic amide derivatives [Zn(NR2)(pbpamd)] (R = SiMe3 6, SiHMe2 7 and iPr 8) were cleanly prepared by reacting the amidine-heteroscorpionate compound Hpbpamd with the corresponding bis(amide) zinc complexes [Zn(NR2)2] (R = SiMe3, SiHMe2 and iPr). The single-crystal X-ray structures of complexes 2, 3 and 6 confirm a 4-coordinate arrangement in all cases, with the zinc metal surrounded in a distorted tetrahedral geometry and the heteroscorpionate ligands arranged in a kappa3 coordination mode. Whereas aliphatic amide heteroscorpionates 6-8 can act as efficient single-component initiators for the ring-opening polymerization of epsilon-caprolactone at room temperature, aromatic amide derivatives were not capable of yielding polymers even at high temperature. Epsilon-caprolactone is polymerized within minutes to give medium-high molecular weight polymers under mild conditions and with narrow polydispersities (M(w)/M(n) = 1.26). Polymer end group analysis shows that the polymerization mediated by aliphatic amide zinc complexes is initiated by amide transfer to the monomer.

11.
Inorg Chem ; 48(12): 5540-54, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19441840

RESUMO

The preparation of new chiral bis(pyrazol-1-yl)methane-based NNO-donor scorpionate ligands in the form of the lithium derivatives [Li(bpzb)(THF)] [1; bpzb = 1,1-bis(3,5-dimethylpyrazol-1-yl)-3,3-dimethyl-2-butoxide] and [Li(bpzte)(THF)] [2; bpzte = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-p-tolylethoxide] or the alcohol ligands (bpzbH) (3) and (bpzteH) (4) has been carried out by 1,2-addition reactions with trimethylacetaldehyde or p-tolualdehyde. The separation of a racemic mixture of the alcohol ligand 3 has been achieved and gave an enantiopure NNO alcohol-scorpionate ligand in three synthetic steps: (i) 1,2-addition of the appropriate lithium derivative to trimethylacetaldehyde, (ii) esterification and separation of diastereoisomers 5, (iii) saponification. Subsequently, the enantiopure scorpionate ligand (R,R)-bpzmmH {6; R,R-bpzmmH = (1R)-1-[(1R)-6,6-dimethylbicyclo[3.1.1]2-hepten-2-yl]-2,2-bis(3,5-dimethylpyrazol-1-yl)ethanol} was obtained with an excellent diastereomeric excess (>99% de) in a one-pot process utilizing the aldehyde (1R)-(-)-myrtenal as a chiral substrate to control the stereochemistry of the newly created asymmetric center. These new chiral heteroscorpionate ligands reacted with [MX(4)] (M = Ti, Zr; X = NMe(2), O(i)Pr, OEt, O(t)Bu) in a 1:1 molar ratio in toluene to give, after the appropriate workup, the complexes [MX(3)(kappa(3)-NNO)] (7-18). The reaction of Me(3)SiCl with [Ti(NMe(2))(3)(bpzb)] (7) or [Ti(NMe(2))(3)(R,R-bpzmm)] (11) in different molar ratios gave the halide-amide-containing complexes [TiCl(NMe(2))(2)(kappa(3)-NNO)] (19 and 20) and [TiCl(2)(NMe(2))(kappa(3)-NNO)] (21 and 22) and the halide complex [TiCl(3)(kappa(3)-NNO)] (23 and 24). The latter complexes can also be obtained by reaction of the lithium compound 1 with TiCl(4)(THF)(2) and deprotonation of the alcohol group of 6 with NaH, followed by reaction with TiCl(4)(THF)(2) in a 1:1 molar ratio, respectively. Isolation of only one of the three possible diastereoisomers of the complexes 19 and 22 revealed that chiral induction from the ligand to the titanium center took place. The structures of these complexes were elucidated by (1)H and (13)C{(1)H} NMR spectroscopy, and the X-ray crystal structures of 3-7, 12, and 24 were also established. Finally, we evaluated the influence that the chiral center of the new heteroscorpionate complexes has on the enantioselectivity of the asymmetric epoxidation of allylic alcohols.

12.
Inorg Chem ; 47(11): 4996-5005, 2008 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-18447332

RESUMO

Reaction of hybrid scorpionate/cyclopentadienyl ligands in the form of the lithium derivatives [Li(bpzcp)(THF)] [bpzcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl], [Li(bpztcp)(THF)] [bpztcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl], and the in situ-generated "Li(bpzpcp)" [bpzpcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-phenylethylcyclopentadienyl] with MCl3(THF)3 afforded the group 3 halide compounds [MCl2(bpzcp)(THF)] (M=Sc, 1; Y, 2), [MCl2(bpztcp)(THF)] (M=Sc, 3; Y, 4), and [MCl2(bpzpcp)(THF)] (M=Sc, 5; Y, 6). The H2O adduct of 4, [YCl2(bpztcp)(H2O)] (7), was formed when a solution of 4 was allowed to stand at room temperature in the presence of moisture. Complexes 1-7 adopt a pseudo-octahedral structure with heteroscorpionate ligands kappa2-NNeta5-Cp coordinated to the metal through the cyclopentadienyl group and two imino nitrogens of pyrazole rings. The alkyl heteroscorpionate scandium and yttrium complexes recently reported by our group, [M(CH2SiMe3)2(bpzcp)], react with 2,6-dimethylphenol and 3,5-dimethylphenol to give the bis(aryloxide) derivatives [M(OAr)2(bpzcp)] (M=Sc, OAr=2,6-dimethylphenoxide, 8; M=Y, OAr=2,6-dimethylphenoxide, 9; M=Y, OAr=3,5-dimethylphenoxide, 10). Complex 9 underwent an interesting hydrolysis process to give the tetranuclear complex [{Y(bpzcp)}(micro-OH)2(micro3-OH){Y(OAr)2}]2 (11). Variable-temperature 1H NMR experiments on 9 and 10 revealed a rapid fluxional exchange between coordinated and noncoordinated pyrazolyl rings, producing interconversion between the two enantiomers in which the scorpionate ligand can be coordinated in a kappa1-Neta5-Cp form. The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of 2, 7, and 11 were also established. Complexes 1 and 2 are active olefin polymerization catalysts after activation with methylaluminoxane. These compounds gave atactic polystyrenes with narrow molecular weight distribution (Mn/Mw 1.26-1.91) and with low molecular weights.

13.
Inorg Chem ; 46(5): 1760-70, 2007 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-17274614

RESUMO

The reaction of bis(3,5-dimethylpyrazol-1-yl)methane (bdmpzm) with BunLi and carbodiimide derivatives, namely, N,N'-diisopropyl, dicyclohexyl, and 1-tert-butyl-3-ethyl carbodiimides, enables the preparation of new heteroscorpionate ligands in the form of the lithium derivatives [Li(NNN)(THF)] (NNN = pbpamd (1) (pbpamd = N,N'-diisopropylbis(3,5-dimethylpyrazol-1-yl)acetamidinate); cbpamd (2) (cbpamd = N,N'-dicyclohexylbis(3,5-dimethylpyrazol-1-yl)acetamidinate); and tbpamd (3) (tbpamd = N-ethyl-N'-tert-butylbis(3,5-dimethylpyrazol-1-yl)acetamidinate)), although a similar process with N,N'-dimethylcarbodiimide gave the dinuclear complex [Li(bpzii)(THF)]2 (4) (bpzii = N-(dimethylamino)-N'-[(dimethylamino)bis(3,5-dimethylpyrazol-1-yl)methylimino]imino). When this last reaction was carried out in an air atmosphere, the cluster complex [Li8(mu4-O)2(mu4-OH)2(mu4-pz)2(kappa2-bpziLi)2(bpzCN)2(THF)4] (5) (bpziLi = dimethylaminobis(3,5-dimethylpyrazol-1-yl)methyliminolithium, bpzCN = bis(3,5-dimethylpyrazol-1-yl)acetonitrile) was isolated and characterized by X-ray analysis. Finally, when the same process was carried out in the presence of water the amidine-scorpionate (bpzan) (6) (bpzan = N,N-dimethylbis(3,5-dimethylpyrazol-1-yl)acetamidine) was obtained. Compounds 1 and 3 reacted with [TiCl4(THF)2] or [ZrCl4] to give complexes of stoichiometry [MCl3((kappa3-NNN))] (M = Ti, Zr) (7-10). The structures of the different compounds were determined by spectroscopic methods and, in addition, the X-ray crystal structures of 1, 3, 4, 5, and 6 were also established.

14.
Dalton Trans ; (36): 4359-70, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16967120

RESUMO

The reaction of different types of bis(pyrazol-1-yl)methane derivatives with Bu(n)Li and alkyl or aryl-containing-isocyanates or isothiocyanates, some of these as chiral reagents, gives rise to the preparation of new heteroscorpionate ligands in the form of the lithium derivatives [Li(NNE)]2 (1-10), although a similar process with trimethylsilyl isocyanate or isothiocyanate gave the complexes [Li(NCX)(bdmpzs)(THF)](X = O, 11; X = S, 12)[bdmpzs = bis(3,5-dimethylpyrazol-1-yl)trimethylsilylmethane]. Compounds 1-8 reacted with [TiCl4(THF)2] or [MCl4](M = Zr, Hf) to give a series of cationic complexes [MCl3{kappa3-NNE(H)}]Cl (13-36) where the heteroscorpionate ligand contains either an acetamide or thioacetamide group resulting from the protonation of the corresponding acetamidate or thioacetamidate. However, under appropriate experimental conditions neutral Ti complexes were isolated-namely [TiClx(NMe2)3-x(S-mbbpam)](37-39)[S-mbbpam =(S)-(-)-N-alpha-methylbenzyl-2,2-bis(3,5-dimethylpyrazol-1-yl)acetamidate]. Finally, two alkoxide-containing titanium complexes [TiClx(OR)3-x(S-mbbpamH)]Cl (40-41) were also prepared. The structures of these complexes have been determined by spectroscopic methods and, in addition, the X-ray crystal structures of 1, 12, and 19 were also established.

15.
Inorg Chem ; 44(15): 5336-44, 2005 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16022532

RESUMO

The reaction of ScCl(3)(THF)(3) or YCl(3) in a 1:1 molar ratio under reflux for 8 h with [{Li(bdmpza)(H(2)O)}(4)] [bdmpza = bis(3,5-dimethylpyrazol-1-yl)acetate], [{Li(bdmpzdta)(H(2)O)}(4)] [bdmpzdta = bis(3,5-dimethylpyrazol-1-yl)dithioacetate], and (Hbdmpze) [bdmpze = 2,2-bis(3,5-dimethylpyrazol-1-yl)ethoxide] affords the corresponding complexes [MCl(2)(kappa(3)-bdmpzx)(THF)] (x = a, M = Sc (1), Y (2); x = dta, M = Sc (3), Y (4); x = e, M = Sc (5), Y (6)). However, when the reaction was carried out for 1 h under reflux between ScCl(3)(THF)(3) and [{Li(bdmpzdta)(H(2)O)}(4)], a new anionic complex [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) was obtained. Reaction of [{Li(bdmpza)(H(2)O)}(4)] with YCl(3) in a 2:1 molar ratio under reflux for 8 h gave the complex [YCl(kappa(3)-bdmpza)(2)] (8). The same reaction, but with the lithium compound [{Li(bdmpzdta)(H(2)O)}(4)], led to the formation of an anionic complex [Li(THF)(4)][YCl(3)(kappa(3)-bdmpzdta)] (9). The X-ray crystal structures of 7 and 9 were established. Finally, the addition of 1 equiv of [{Li(bdmpza)(H(2)O)}(4)] or [{Li(bdmpzdta)(H(2)O)}(4)] to a solution of YCl(3) in THF under reflux, followed by the addition of 1 equiv of 1,10-phenanthroline, resulted in the formation of the corresponding complexes [YCl(2)(kappa(3)-bdmpzx)(phen)] (x = a (10), x = dta (11)). These complexes are the first examples of group 3 metals stabilized by heteroscorpionate ligands. In addition, we have explored the reactivity of some of these complexes with alcohols and amides. For example, the direct reaction of [YCl(2)(kappa(3)-bdmpza)(THF)] (2) with several alcohols gave the alkoxide complexes [YCl(kappa(3)-bdmpza)(OR)] (R = Et (12), iPr (13)). Finally, the reaction between [ScCl(2)(kappa(3)-bdmpzdta)(THF)] (3) or [Li(THF)(4)][ScCl(3)(kappa(3)-bdmpzdta)] (7) and LiN(SiMe(3))(2).Et(2)O in 1:1 and 1:2 molar ratios gave rise to the complexes [ScCl(kappa(3)-bdmpzdta){N(SiMe(3))(2)}] (14) and [Sc(kappa(3)-bdmpzdta){N(SiMe(3))(2)}(2)] (15), respectively.


Assuntos
Compostos Organometálicos/síntese química , Pirazóis/química , Escândio/química , Ítrio/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Pirazóis/síntese química , Estereoisomerismo
16.
J Med Chem ; 45(9): 1835-44, 2002 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-11960495

RESUMO

The reaction of Pt(dimethyl sulfoxide)(2)CBDCA (CBDCA = 1,1-cyclobutanedicarboxylate) with 1,4-diaminebutane and 1,3-diaminepropane ligands yields, under certain conditions, new [Pt(diamine)(2)]CBDCA complexes (1a,b), where the CBDCA ligand has been removed from the coordination sphere of the platinum atom by the diamine ligand, instead of forming the expected [Pt(diamine)CBDCA] complexes (1'a,b). The structure of complexes 1a and 1'b was solved by X-ray diffraction. Complex 1a crystallizes in the orthorhombic system, in the noncentrosymmetric C222 space group, with unit cell parameters: a = 20.053(2) A; b = 8.655(2) A, c = 5.711(3) A; V = 991.2(6) A(3); delta (calcd) = 1.627 mg/m(3); and R = 0.050. The Pt atom displays an unexpected distorted tetrahedral coordination with a N-Pt-N inner bond angle equal to 81(2) degrees for N atoms of the same 1,3-propanediamine ligand and a N-Pt-N bond angle for different ligands equal to 135.4(9) degrees. Complex 1'b crystallizes in the monoclinic system, in the centrosymmetric P2(1)/c space group, with unit cell parameters: a = 6.007(2) A; b = 15.336(4) A, c = 13.232(5) A; beta = 101.90(3) degrees; V = 1192.8(7) A(3); delta (calcd) = 2.369 mg/m(3); and R = 0.067. Cytotoxicity data show that of all the synthesized compounds, only complexes 1'a and 1'b exhibit remarkable cytotoxic properties. Thus, in contrast with carboplatin (cis-diammine-1,1-cyclobutane dicarboxilatoplatinum(II)), compounds 1'a and 1'b, which also contain the CBDCA ligand, are able to circumvent cisplatin (cis-diamminedichloroplatinum(II)) resistance in several tumor cells. Moreover, after 24 h of incubation of CH1cisR ovarian tumor cells with 10 microM of compounds 1'a and 1'b, the level of DNA interstrand cross-links (ICLs) induced by compounds 1'a and 1'b is 3.3 and 3.8 times higher, respectively, than that of carboplatin and 3.5 and 4.0 times higher, respectively, than that of cisplatin. Interestingly, under the same conditions, the intracellular accumulation of compounds 1'a and 1'b is similar to that of carboplatin and cisplatin. However, the extent of binding to DNA of compounds 1'a and 1'b is similar to that of cisplatin but slightly higher than that of carboplatin. We propose that circumvention of cisplatin resistance in CH1cisR cells by compounds 1'a and 1'b might be related to its higher ability to form DNA ICLs relative to carboplatin and cisplatin.


Assuntos
Antineoplásicos/síntese química , Cisplatino/farmacologia , Reagentes de Ligações Cruzadas/síntese química , DNA/metabolismo , Compostos Organoplatínicos/síntese química , Platina , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Estrutura Molecular , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...